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We suggest new decoding techniques for diversity channels employing space time codes (STC) when the channel coefficients are
unknown to both transmitter and receiver. Most of the existing decoders for unknown diversity channels employ training sequence
in order to estimate the channel. These decoders use the estimates of the channel coefficients in order to perform maximum
likelihood (ML) decoding. We suggest an efficient implementation of the generalized likelihood ratio test (GLRT) algorithm that
improves the performance with only slight increase in complexity. We also suggest an energy weighted decoder (EWD) that shows
additional improvement without further increase in the computational complexity.
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1. INTRODUCTION

Space time coding schemes have been shown to significantly
improve the performance of communication over fading
channels when multiple antennas are available at transmit-
ter and receiver. Efficient space time codes (STC) for mobile
cellular diversity channel are introduced by Tarokh et al. [1]
where the channel coefficients are assumed to be known to
the decoder. Many of the STC schemes assume full or par-
tial receiver knowledge of the channel coefficients. When no
knowledge of the channel is available, training sequences can
be used in order to facilitate communication over an un-
known channel. Since the sequence is known at the receiver,
an estimate of the channel can be achieved at the receiver [2].

The use of training sequences has some drawbacks. First,
there is a mismatch penalty. Because the training sequence
is of limited length, the channel estimate formed at the re-
ceiver is imprecise which results in an increased error rate.
Secondly, there is penalty in throughput, because the train-
ing sequence carries no information. This penalty is worse
the longer the training sequence is, as compared to the length
of the data sequence. When the channel changes rapidly over
time, using training sequences might be inadequate. Since
the channel can be assumed to be constant only over a very
short period of time, training sequences would have to be

transmitted very often, which would severely increase the
throughput penalty. In broadcast multipoint communica-
tion networks, if a channel from the master to one of the
receiver stations goes down at any time following the ini-
tial training period and it is desired to retain only that re-
ceiver, the use of training sequences is unsuitable. In such
situations, it is desirable for the receiver to decode without
having a known training sequence available.

An efficient differential detection scheme which does not
require training sequences and has a linear complexity was
developed in [3]. The detection scheme was developed for
a simple transmit encoding design, known as the Alamouti
block coding, first introduced in [4]. The detection scheme
in [3] requires equal-energy signal constellation such as PSK.
A different approach which requires no pilot sequences is the
unitary space-time modulation introduced in [5]. The de-
coder in [5] assumes a Rayleigh statistical model on the chan-
nel coefficients with a known covariance matrix. The encod-
ing and decoding in [5] have exponential complexities.

From the error probability point of view the maximum-
likelihood (ML) decoder is optimal for known channels. In
the situation we are interested in this work, however, the
channel coefficients are unknown and also do not have a
known statistical model. A generalization of the ML deci-
sion rule for unknown channels is the generalized likelihood
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ratio test (GLRT). Unlike the ML decoder for known chan-
nels, the GLRT is generally not optimal under the error prob-
ability criterion. In [6, 7] we develop a new decoder that
improves the performance of the GLRT for unknown Gaus-
sian linear channels. The improvement in [6, 7] is uniform
and exponential, that is, for all the possible channel coef-
ficients the error probability is either smaller by an expo-
nential factor, or, only for some, remains the same. How-
ever, both the GLRT algorithm and the decoder we pro-
pose in [6, 7] have high computational complexity for prac-
tical implementation in space time systems. In this paper,
we are interested in developing a computationally efficient
decoder that could be applied to a large class of codes and
on the other hand would assume no statistical model on
the channel coefficients. To this end, we relax the complex-
ity of the GLRT by using an appropriate approximation.
We further suggest a new decoder that improves the perfor-
mance of the approximated GLRT decoder for non equal-
energy signal constellation while maintaining its low com-
plexity.

The outline of the paper is as follows. In Section 2,
the channel model is presented. In Section 3, an exam-
ple of a space time system is given, later used for sim-
ulation. In Section 4, we introduce the GLRT for diver-
sity channels and suggest an efficient approximation of the
GLRT. We give motivation for a new decoder that improves
the GLRT and propose the new energy weighted decoder
(EWD), later in Section 4. In Section 5, a low complexity
implementation of the approximated GLRT and the EWD
is developed. In Section 6, simulation results for the per-
formance of the new decoders will show that the GLRT
decoder improves the existing decoder (that estimates the
channel by the use of training sequences) and that the
EWD shows further performance improvement. A sum-
mary and suggestions for further research will conclude the
paper.

2. CHANNEL MODEL

The model of a complex diversity channel with L transmit
antenna and J receive antenna is given by

�m : yn, j =
L∑
i=1

αi, jx
(m)
n,i + zn, j ,

n = 0, 1, . . . , N − 1, m = 1, . . . ,M,

(1)

where {yn, j}N−1
n=0 are the complex observed data samples at re-

ceive antenna j, {x(m)
n,i }N−1

n=0 are the complex symbols trans-
mitted by the ith antenna for the mth codeword, αi, j are the
complex unknown fading coefficients from transmit antenna
i to receive antenna j and zn, j are white noise samples mod-
eled as independent zero-mean complex Gaussian random
variables with variance σ2 per dimension. We can write (1)
as

�m : Y = Xmα + Z, (2)

where

Xm =




x(m)
0,1 x(m)

0,2 · · · x(m)
0,L

x(m)
1,1 x(m)

1,2 · · · x(m)
1,L

...
...

. . .
...

x(m)
N−1,1 x(m)

N−1,2 · · · x(m)
N−1,L


 ,

α =



α1,1 α1,2 · · · α1,J

α2,1 α2,2 · · · α2,J
...

...
. . .

...
αL,1 αL,2 · · · αL,J


 ,

Y =




y0,1 y0,2 · · · y0,J

y1,1 y1,2 · · · y1,J
...

...
. . .

...
yN−1,1 yN−1,2 · · · yN−1,J


 ,

Z =




z0,1 z0,2 · · · z0,J

z1,1 z1,2 · · · z1,J
...

...
. . .

...
zN−1,1 zN−1,2 · · · zN−1,J


 ,

(3)

where matrices Xm, m = 1, . . . ,M are assumed to be full rank,
as is the case for some of the coding methods we have en-
countered in the literature. For example, in [8] the matrix
Xm has an orthogonal structure and in [5] the columns of
Xm are designed to be (scaled) orthonormal.

3. AN EXAMPLE OF A SPACE-TIME CODE SYSTEM

3.1. The encoding algorithm

In this section we refer to the trellis based STC proposed by
Tarokh et al. [1]. In [1], the channel coefficients were mod-
eled as independent complex Gaussian random variables.
This assumption is necessary for the criteria for optimal en-
coding design, but not for the decoding algorithm which is
the main concern of our work. Therefore, we do not assume
a statistical model of the channel coefficients until Section 6
for simulations.

In this example, a 16-QAM 16-state STC is used with two
transmit antennas and two receive antennas (L = 2, J = 2).
Figure 1 shows the 16-QAM constellation and the trellis de-
scription for this code. Each row in the matrix represents the
edge labels for transitions from the corresponding state. At
the beginning and end of each frame the encoder is required
to be in zero state. At each time t, depending on the state of
the encoder and the input bits a transition branch is chosen.
If the label of this branch is s1s2 then the s1 is transmitted
over the first transmit antenna and s2 over the second one. In
the general case, the label of each branch is s1s2 · · · sL. We will
illustrate the encoding with an example. Suppose the input
stream to be encoded is

m = 0001101011010110. (4)
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00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

0
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2

3

4
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8

9
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C

D
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F
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Figure 1: 16 QAM 16-state STC with 2 transmit antennas.

The bit stream is divided into groups of four bits and each
group is mapped into one of sixteen constellation points.
Thus the input to the encoder becomes

� = {1, A,D, 6}. (5)

The encoder is at the beginning in zero state. The first sym-
bol to be encoded is 1. The encoder transits to state 1 in the
trellis. The transmitted symbols s1s2 are indicated in the ze-
roth row (current state) and first column (next state) of the
matrix and therefore s1s2 = 01. The first antenna transmits 0
and the second antenna transmits 1. Continuing the encod-
ing process this way, the symbol sequences transmitted by the
two antennas are

�1 = {0, B, A, 7}, �2 = {1, A,D, 6}. (6)

3.2. The decoding algorithm for known channels

In [1], the decoder is assumed to have full knowledge of the
channel coefficients αi, j . When the channel is known, the op-
timal decoder uses the ML decision rule, which for Gaussian

channels selects the codewords according to the minimal
Euclidean distance criterion. For the trellis STC described
above, assuming that yn, j is the received signal at receive an-
tenna j at time n, the branch metric for a transition labeled
s1s2 · · · sL is given by

J∑
j=1

∣∣∣∣∣yn, j −
L∑
i=1

αi, j si

∣∣∣∣∣
2

. (7)

The Viterbi algorithm is then used to compute the path with
the lowest accumulated metric.

3.3. Decoding algorithm for unknown channels

The more practical situation where the channel coefficients
are unknown to the decoder is investigated by Naguib et al.
[2]. The decoding method suggested in [2, 9] is to first es-
timate the channel using a training sequence. This is a mis-
matched decoder since the decoder operates according to the
estimated channel and not according to the actual one. At
the beginning of each frame, a sequence Wi of length k pilot
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symbols is transmitted from transmit antenna i

Wi =
(
Wi,0,Wi,1, . . . ,Wi,k−1

)
. (8)

The sequences W1,W2, . . . ,WL are designed to be orthogo-
nal to each other

Wp · Wq =
k−1∑
j=0

Wp,jW̄q, j = 0 (9)

whenever p �= q.
Let y j = (y0, j , y1, j , . . . , yk−1, j) be the observed sequence of

received signals at antenna j during the training period given
by

yn, j =
L∑
i=1

αi, jWi,n + zn, j , 1 ≤ j ≤ L, 0 ≤ n ≤ k − 1. (10)

The goal is to estimate αi, j , i = 1, 2, . . . , L, j = 1, 2, . . . , J using
the observed signals.

The least square (LS) estimate for α̂i, j is used, which is
given by the inner product

α̂i, j =
yj · Wi

Wi · Wi
. (11)

The estimated coefficient vector α̂i, j is then substituted in (7)
instead of αi, j .

4. NOVEL DECODING METHODS

The classical decoding algorithm for unknown channels is
the GLRT decision rule. This section begins by reviewing the
GLRT decision rule in general and specifically for diversity
channels. An approximation of the GLRT is suggested, which
can be efficiently implemented. Later, we give the motivation
for a new decoder that improves the GLRT and propose the
new energy weighted decoder (EWD).

4.1. The generalized likelihood ratio test (GLRT)

Consider the family of channels specified by a set of channel
laws,

� =
{
pθ(y|x), θ ∈ Θ

}
, (12)

where pθ(·|·) denotes the conditional probability mass func-
tions (PMF) governing the channel, which depends on the
unknown and deterministic parameter θ ∈ Θ. For a known
channel, the ML decoder is optimal in the sense of mini-
mizing the probability of error (over messages). The decision
rule of this decoder is given by

φ(y) = i ⇐⇒ pθ
(

y|x(i)) = max
1≤ j≤M

pθ
(

y|x( j)), (13)

where x(i) is the ith codeword. Since the ML decision rule is
in general different for different channels, it cannot be em-
ployed when the channel is unknown. A common approach
in this case is the GLRT decoding rule. The GLRT decoder

can be defined as follows:

φGLRT(y) = i ⇐⇒ sup
θ∈Θ

pθ
(

y|x(i)) = max
1≤ j≤M

sup
θ∈Θ

pθ
(

y|x( j)).
(14)

While the GLRT is intuitively appealing as joint channel and
data estimation, it does not have optimal performance and
lacks solid theoretical justification.

For Gaussian diversity channels the decoding criterion of
the GLRT becomes

m̂ = arg min
m

{
min
α

∥∥Y − Xmα
∥∥2

}

= arg min
m

{
min
α

N−1∑
n=0

J∑
j=1

∣∣∣∣yn, j −
L∑
i=1

xn,iαi, j

∣∣∣∣
2
}
,

(15)

where Y , Xm, and α are defined in (2) and the norm of the
matrix A is defined as

‖A‖ =

(∑
i

∑
j

∣∣ai, j∣∣2

)1/2

. (16)

The LS solution for α yields

α̂m =
(
XH
mXm

)−1
XH
mY (17)

and it can be easily derived that the closed form GLRT deci-
sion rule is

m̂ = arg max
m

{
YHXm

(
XH
mXm

)−1
XH
mY

}
. (18)

4.2. Approximated GLRT decoder

Since the decoding process in Section 3 involves the Viterbi
algorithm, an approximated GLRT decoding that uses a se-
quential updated estimation of the channel coefficients can
be incorporated into the existing decoder. The approxi-
mated GLRT decoder can be implemented, as we will show
in Section 5 with only slight increase in complexity over
the decoder for known channels. We define the matrices
X0
m, X

1
m, . . . , X

N−1
m and the matrices Y 0, Y 1, . . . , YN−1 as

Xn
m =




x(m)
0,1 x(m)

0,2 · · · x(m)
0,L

x(m)
1,1 x(m)

1,2 · · · x(m)
1,L

...
...

. . .
...

x(m)
n,1 x(m)

n,2 · · · x(m)
n,L


 ,

Yn =



y0,1 y0,2 · · · y0,J

y1,1 y1,2 · · · y1,J
...

...
. . .

...
yn,1 yn,2 · · · yn,J


 .

(19)

The LS solution of the following minimization problem:

α̂nm = min
α

∥∥Yn − Xn
mα

∥∥ (20)
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is given by,

α̂nm =
((

Xn
m

)H
Xn
m

)−1(
Xn
m

)H
Yn, (21)

where n is the update index. Note that α̂nm can be computed
at instant n without relying on future received signals.

The approximated GLRT criterion is

m̂ = arg min
m




N−1∑
n=0

J∑
j=1

∣∣∣∣∣yn, j −
L∑
i=1

xn,iα̂
n
m

∣∣∣∣∣
2

. (22)

Unlike the GLRT where the LS estimation of the channel
coefficient matrix α is carried out over an entire codeword,
here the estimated coefficients are updated at each time inter-
val. The estimation of α at instant n depends only on present
and past received signals.

4.3. Improving the GLRT: motivation

For a simple scalar case of fading (a single transmit antenna
and a single receive antenna) a decoder that uniformly im-
proves the GLRT is found in the appendix of [10] and is also
suggested in [11]. That is, the new decoder improves the er-
ror probability performance for each choice of fading coeffi-
cients. The (real) fading channel model is

y = αx(m) + z, n = 0, 1, . . . , N − 1, m = 1, . . . ,M, (23)

where y = (y0, y1, . . . , yN−1) is the observed vector, x(m) is
the mth codeword, α is an unknown fading coefficient, and
the components of the noise vector z are i.i.d. zero-mean,
Gaussian random variables with variance σ2. Suppose that
our codebook consists of two codewords (M = 2) of length
N given by x(1) = (a, 0, 0, . . . , 0) and x(2) = (0, b, 0, . . . , 0).
Any orthogonal code of two codewords can be transformed
to this form. Since all of the coordinates of both codewords
are zero for n > 1, the problem is actually two dimensional.

The decoding regions for the GLRT decoder appear in
Figure 2. The GLRT projects the received signal (y0, y1) onto
the directions of the two-dimensional vectors formed by the
first two coordinates of x(1) and x(2), and decides according
to the smaller between the distances of (y0, y1) to the verti-
cal axis and to the horizontal axis of the coordinate system.
The decoding rule decides x(1) if |y0| ≥ |y1| and decides x(2)

if |y0| < |y1|. Thus, the boundaries between the two deci-
sion regions are straight lines through the origin at slopes of
±45 degrees. Note that the decoding rule does not depend on
the specific values of a and b. The distances of α · (a, 0) and
α ·(0, b) from the boundary lines dictate the error probability
for the decoder. The distance d1 of α · (a, 0) from the bound-
ary lines at slope ±1 is αa/

√
2 and the distance d2 of α · (0, b)

from the same lines is αb/
√

2. The probability of error is of
the exponential order of exp{−α2 min{a2, b2}/(4σ2)}.

The decoding regions of the new decoder suggested in
[10] appear in Figure 3. This decoder projects the vector
formed by the first two coordinates of each x(m) in the di-
rection of the first two coordinates of y. The decoding rule
decides x(1) if |y0/a| ≥ |y1/b| and decides x(2) if |y0/a| < |y1/b|.

tanβ = 1

αx(1) =(αa, 0) x(1) =(a, 0)

|y1|

|y0| y = (y0, y1)
αx(2) = (0, αb)

x(2) = (0, b)

Figure 2: Signal space diagram of the GLRT decoder.

tanβ = b/a

αx(1)=(αa, 0) x(1)=(a, 0)

|αy1|/‖y‖
y = (y0, y1)

|by0|/‖y‖

αx(2)=(0, αb)

x(2)=(0, b)

Figure 3: Signal space diagram of the new decoder.

In other words the new decoder decides x(1) if |by0| ≥ |ay1|
and decides x(2) if |by0| < |ay1|. That is, the new decoder
multiplies the metric of the GLRT for each codeword with
the square root of the energy of that codeword. The bound-
ary between the two decision regions is a pair of straight
lines with slopes ±b/a. For the new decoder the distances
d1, d2 of α · (a, 0) and α · (0, b) from the boundary lines
are both αab/

√
a2 + b2. The probability of error is of the

exponential order of exp{−α2a2b2/[2σ2(a2 + b2)]}. Unless
a = b, the exponential order of the new decoder is strictly
better than that of the GLRT for any α. The improvement
was achieved by maximizing the minimal of the distances
d1 and d2.
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4.4. Energy weighted decoder

Motivated by the simple fading case with a single antenna in
the transmitter and receiver we can derive a new decoder for
STC over a diversity channel. Instead of (22) for the approxi-
mated GLRT decoder, the decision rule for the new decoder is

m̂=arg min
m




N−1∑
n=0


 L∑

i=1

∣∣xn,i∣∣2




1/2
J∑
j=1

∣∣∣∣yn, j −
L∑
i=1

xn,iα̂
n
m

∣∣∣∣
2

.

(24)

That is, the metric for each time interval is multiplied by the
square root of the transmitted energy in that time interval,
analogously to the new decoder suggested for the simple
fading example.

Unlike the single fading coefficient case, for diversity
channels this decoder does not generally improve the GLRT
for all possible channel coefficient matrices α, as we have
demonstrated in several examples of codebooks in [6]. Nev-
ertheless, this decoder improves the GLRT in many cases.
Indeed, our experimental results in Section 6 indicate the
EWD outperforms the GLRT. An intuitive explanation for
the EWD performance improvement is given as follows. For
a certain decoder and a channel coefficient matrix, the error
probability is given by

P(e|α) =
1
M

M∑
m=1

p(e|α,m), (25)

where α denotes the channel coefficients matrix and m de-
notes the index of transmitted codeword matrix X (m). The
exponential order of the error probability is therefore

P(e|α) ∼ max
m

p(e|α,m). (26)

For the GLRT decoder the exponential order in (26) is deter-
mined, for most values of α, by the error probability of one of
the less energetic codewords. Since the weighting of the EWD
prefers selecting the less energetic codewords (in comparison
to the GLRT), this compensation improves the exponential
order in (26) for most values of α.

5. IMPLEMENTATION

When the encoder uses a trellis code, such as in the example
in Section 2 the decoder uses the Viterbi algorithm. Both the
approximated GLRT and the EWD can be incorporated with
the Viterbi algorithms, using the recursive least square (RLS)
algorithm.

At each step n of the algorithm we calculate the estimator
α̂(n−1)→n
r (r = 1, . . . , T , where T is the number of branches of

the trellis at each interval) corresponding to each of the tran-
sitions from instant n − 1 to instant n and the associated sur-
viving sequences. The estimated channel coefficients can be
substituted in the trellis metrics in (7). Each state at instant n
has in addition to the cumulative metric and associated sur-
viving sequence an associated estimated channel coefficient
vector α̂nr .

In order to avoid increase in computational complex-
ity we observe that the estimated coefficients α̂(n−1)→n

r , n =
1, . . . , N − 1 do not have to be calculated separately for each
n. The estimated coefficients can be updated via the recursive
least square algorithm (RLS). We fully describe below the al-
gorithm.

Step 0

At the beginning of the algorithm (n = 0) the decoder is at
state 0. The decoder is supplied with an initial estimate of α,
denoted as α̂0

0. This estimate can be achieved, for example, by
using a pilot sequence matrix with L (number of transmit-
ters) rows. In this case we define

Q0
0 = XH

p Xp, (27)

where Xp is the pilot sequence. When a pilot sequence is
not available α̂0

0 can be determined, for example, by using
the most updated estimation of α̂0

0 from the previous frame.
When no pilot sequences are used we set Q0

0 = 0 (L × L ma-
trix).

Step n

In addition to the cumulative metric associated with each
state in step n − 1 and the surviving sequence, each state q
is also associated with estimated coefficients α̂n−1

q . Consider a
transition r labeled sn,1sn,2 · · · sn,L. Define

snr =
[
sn,1 sn,2 · · · sn,L

]
,

yn =
[
yn,1 yn,2 · · · yn,J

]
.

(28)

(a) Updating the estimated channel coefficients

The decoder has to estimate the channel coefficients for each
of the transitions from instant n − 1 to instant n. For transi-
tion r emerging from state q to state p, α̂n−1→n

r is calculated
by

α̂n−1→n
r = α̂n−1

q + Kn
r

(
yn − snr α̂

n−1
q

)
, (29)

where Kn
r is calculated according to

Kn
r =

(
Qn

r

)−1snr (30)

and where

Qn
r = Qn−1

r +
(

snr
)Hsnr . (31)

Calculating (30) requires inversion of a L × L matrix. If L is
large, the computational complexity can be decreased using
the matrix inversion lemma

(
Qn

r

)−1=
(
Qn−1

r

)−1−(
Qn−1

r

)−1(snr
)H

×
[
1+snr

(
Qn−1

r

)−1(snr
)H]−1

snr
(
Qn−1

r

)−1

(32)

which does not involve matrix inversion.
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(b) Calculating the transition metric

Approximated GLRT:

J∑
j=1

∣∣∣∣∣yn, j −
L∑
i=1

α̂(n−1)→n
r sn,i

∣∣∣∣∣
2

. (33)

Energy Weighted Decoder:


 L∑

i=1

∣∣sn,i∣∣2




1/2
J∑
j=1

∣∣∣∣∣yn, j −
L∑
i=1

α̂(n−1)→n
r sn,i

∣∣∣∣∣
2

. (34)

The algorithm requires at each transition of the trellis
only scalar inversions. The matrix multiplications in (29) is
of order L × J which is the same order as the metric compu-
tation. The matrix multiplications in (30) and (31) or (32)
are of order L × L (in practical systems L ≤ 16 but most often
L = 2), but do not depend on the received signal and there-
fore do not have to be computed in real-time. Therefore, the
complexity of the approximated GLRT decoder is not signif-
icantly higher than that of the decoder designed for a known
channel.

6. SIMULATION RESULTS

For the simulations, we used the 16-QAM 16-state STC de-
scribed in Section 2 with two transmit antennas and two re-
ceive antennas. The channel coefficients were generated as
samples of independent complex zero-mean Gaussian ran-
dom variables with variance 0.5 per dimension. The frame of
message to be encoded was 128 bits long. The channel coef-
ficients were assumed to be constant during a frame period.
The channel coefficients during different frame periods were
assumed to be statistically independent (quasi-static condi-
tions). The short pilot sequence was of two symbols only. The
three decoding algorithms examined were the mismatched
decoder described in Section 3.3, the approximated GLRT
and the energy weighted decoder. The results of the simu-
lations are shown in Figure 4. The ML decoder, employed
when the channel is known to the receiver, is shown as a per-
formance bound. The GLRT has about 2.5 dB advantage over
the mismatched decoder and the EWD shows an additional
advantage of 0.5 dB. Both algorithms allow communication
at significantly lower SNR than the mismatched decoder for
this QAM STC system.

7. CONCLUSIONS

In this paper, we have examined the problem of decoding for
STC systems when the channel coefficients are unknown to
the decoder. We have pointed out the difficulties which arise
from employing pilot sequences, especially if those sequences
are large in comparison to the frame length. These difficulties
led us to suggest the GLRT decoder and its approximation for
diversity channels. We later derived the EWD that improves
the performance of the GLRT, motivated by the simple fad-
ing example in [10]. An efficient implementation of both
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Figure 4: Symbol error probability for various decoders.

the approximated GLRT and the EWD was developed, with
slight increase of complexity over the decoding scheme for
known channels. Simulation results demonstrated the per-
formance improvement of the approximated GLRT and the
EWD. Since the EWD shows robust performance improve-
ment for non equal-energy signal constellation, it may en-
able the usage of QAM even when the antenna fading gains
are unknown.

One direction for future research is modifying our de-
coders to time variant channel model. A natural generaliza-
tion of the GLRT and the EWD to time variant channels
would modify the estimation of the channel coefficients in-
volved in the algorithm. Instead of LS estimation it could in-
volve the weighted least square (WLS) algorithm, where the
weights are chosen to account for the changes in the channel.

The problem of the encoder design for unknown diver-
sity channels can be investigated more closely in order to
achieve a complete view of a universal communication sys-
tem. A general discussion of robust communication for vari-
ous classes of unknown channels can be found in [12], where
both encoding and decoding methods were considered. The
design criteria for good codes when the channel coefficients
are assumed to have complex Gaussian distribution were in-
vestigated in [1]. Understanding the design criteria for good
codes when the channel coefficients do not have a statistical
model can be the subject of a future research.
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